An algebraic solution for the numbers of staggered conformers of alkanes $\stackrel{\sim}{\approx}$

Jianji Wang, Shiming Cao and Ying Li

Department of Chemistry, The Inner Mongolia Normal University, Huhehaote 010022, PR China

Received 6 February 1996; revised 6 May 1996

The staggered conformers of alkanes are counted by using a tree-counting method. Some numerical results are tabulated.

The algebraic solution for the numbers of staggered conformers of alkanes can be found by using a tree-counting method, which is similar to that used for the enumeration of configurations of alkanes and other acyclic compounds [1–4]. Each conformer enantiomer pair is counted double.

Let a(x) be the generating function for counting staggered conformers of alkyls. Let c(x) be the generating function for counting staggered conformers of alkyls with C₃ symmetry. Let d(x) be the generating function for counting staggered conformers of alkyls without C₃ symmetry. So we have

$$a(x) = d(x) + c(x)$$
. (1)

When an alkyl without C_3 symmetry is connected to another alkyl without C_3 symmetry, there arise three conformers. Otherwise there is just one conformer. Let b(x) be the generating function of the space positions of conformers of alkyls related to another alkyl without C_3 symmetry. Then

$$b(x) = 3d(x) + c(x)$$
. (2)

Thus we establish the following recurrence formula:

$$a(x) = \sum_{i=0}^{\infty} a_i x^i = 1 + \frac{1}{3} x [b^3(x) + 2b(x^3)], \qquad (3)$$

$$c(x) = \sum_{i=0}^{\infty} c_i x^i = 1 + x \cdot b(x^3) .$$
(4)

th The solution of the open problem in J. Math. Chem. 17 (1995), see ref. [5].

© J.C. Baltzer AG, Science Publishers

i	a_i	b_i	Ci	d_i	ei
0	1	1	1	0	
1	1	1	1	0	1
2	1	3	0	1	1
3	4	12	0	4	1
4	19	55	1	18	4
5	91	273	0	91	10
6	476	1428	0	476	40
7	2586	7752	3	2583	171
8	14421	43263	0	14421	831
9	82225	246675	0	82225	4147
10	476913	1430715	12	476901	21822
11	2804880	8414640	0	2804880	117062
12	16689036	50067108	0	16689036	642600
13	100276894	300830572	55	100276839	3582322
14	607588840	1822766520	0	607588840	20256885

Table 1 The numbers of conformers of alkyls and alkanes.

Here the a_i is the number of all staggered conformers of alkyls containing *i* carbon atoms and the c_i is the number of staggered conformers of alkyls with C₃ symmetry. We have $a_0 = 1$, $b_0 = 1$, $c_0 = 1$. Some results are given in Table 1.

Let e(x) be the generating function for counting staggered conformers of alkanes. Using the same method as for the enumeration of configurations of alkanes, we obtain

$$e(x) = \sum_{i=0}^{\infty} e_i x^i = \frac{1}{12} x [b^4(x) + 3b^2(x^2) + 8b(x)b(x^3)] - b(x)[c(x) - 1] + a(x) \cdot [c(x) - 1] - \frac{1}{2} \{ 3d^2(x) + 2d(x)[c(x) - 1] + [c(x) - 1]^2 - b(x^2) + 1 \}.$$
(5)

Here e_i is the number of all staggered conformers of alkanes containing *i* carbon atoms. Some results are given in Table 1.

References

- [1] R.W. Robinson, F. Harary and A.T. Balaban, Tetrahedron 32 (1976) 355.
- [2] J. Wang and Q. Wang, Tetrahedron 47 (1991) 2969.
- [3] J. Wang and F. Gu, J. Chem. Inform. Comput. Sci. 31 (1991) 552.
- [4] F. Gu and J. Wang, J. Chem. Inform. Comput. Sci. 32 (1992) 407.
- [5] S.J. Cyvin, J. Math. Chem. 17 (1995) 292.