An algebraic solution for the numbers of staggered conformers of alkanes ${ }^{t}$

Jianji Wang, Shiming Cao and Ying Li
Department of Chemistry, The Inner Mongolia Normal University, Huhehaote 010022, PR China

Received 6 February 1996; revised 6 May 1996

Abstract

The staggered conformers of alkanes are counted by using a tree-counting method. Some numerical results are tabulated.

The algebraic solution for the numbers of staggered conformers of alkanes can be found by using a tree-counting method, which is similar to that used for the enumeration of configurations of alkanes and other acyclic compounds [1-4]. Each conformer enantiomer pair is counted double.

Let $a(x)$ be the generating function for counting staggered conformers of alkyls. Let $c(x)$ be the generating function for counting staggered conformers of alkyls with C_{3} symmetry. Let $d(x)$ be the generating function for counting staggered conformers of alkyls without C_{3} symmetry. So we have

$$
\begin{equation*}
a(x)=d(x)+c(x) \tag{1}
\end{equation*}
$$

When an alkyl without C_{3} symmetry is connected to another alkyl without C_{3} symmetry, there arise three conformers. Otherwise there is just one conformer. Let $b(x)$ be the generating function of the space positions of conformers of alkyls related to another alkyl without C_{3} symmetry. Then

$$
\begin{equation*}
b(x)=3 d(x)+c(x) \tag{2}
\end{equation*}
$$

Thus we establish the following recurrence formula:

$$
\begin{align*}
& a(x)=\sum_{i=0}^{\infty} a_{i} x^{i}=1+\frac{1}{3} x\left[b^{3}(x)+2 b\left(x^{3}\right)\right] \tag{3}\\
& c(x)=\sum_{i=0}^{\infty} c_{i} x^{i}=1+x \cdot b\left(x^{3}\right) \tag{4}
\end{align*}
$$

[^0]Table 1
The numbers of conformers of alkyls and alkanes.

i	a_{i}	b_{i}	c_{i}	d_{i}	e_{i}
0	1	1	1	0	
1	1	1	1	0	1
2	1	3	0	1	1
3	4	12	0	4	1
4	19	55	1	18	4
5	91	273	0	91	10
6	476	1428	0	476	40
7	2586	7752	3	2583	171
8	14421	43263	0	14421	831
9	82225	246675	0	82225	4147
10	476913	1430715	12	476901	21822
11	2804880	8414640	0	2804880	117062
12	16689036	50067108	0	16689036	642600
13	100276894	300830572	55	100276839	3582322
14	607588840	1822766520	0	607588840	20256885

Here the a_{i} is the number of all staggered conformers of alkyls containing i carbon atoms and the c_{i} is the number of staggered conformers of alkyls with C_{3} symmetry. We have $a_{0}=1, b_{0}=1, c_{0}=1$. Some results are given in Table 1 .

Let $e(x)$ be the generating function for counting staggered conformers of alkanes. Using the same method as for the enumeration of configurations of alkanes, we obtain

$$
\begin{align*}
e(x)= & \sum_{i=0}^{\infty} e_{i} x^{i}=\frac{1}{12} x\left[b^{4}(x)+3 b^{2}\left(x^{2}\right)+8 b(x) b\left(x^{3}\right)\right] \\
& -b(x)[c(x)-1]+a(x) \cdot[c(x)-1] \\
& -\frac{1}{2}\left\{3 d^{2}(x)+2 d(x)[c(x)-1]\right. \\
& \left.+[c(x)-1]^{2}-b\left(x^{2}\right)+1\right\} \tag{5}
\end{align*}
$$

Here e_{i} is the number of all staggered conformers of alkanes containing i carbon atoms. Some results are given in Table 1.

References

[1] R.W. Robinson, F. Harary and A.T. Balaban, Tetrahedron 32 (1976) 355.
[2] J. Wang and Q. Wang, Tetrahedron 47 (1991) 2969.
[3] J. Wang and F. Gu, J. Chem. Inform. Comput. Sci. 31 (1991) 552.
[4] F. Gu and J. Wang, J. Chem. Inform. Comput. Sci. 32 (1992) 407.
[5] S.J. Cyvin, J. Math. Chem. 17 (1995) 292.

[^0]: ${ }^{*}$ The solution of the open problem in J. Math. Chem. 17 (1995), see ref. [5].

